首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   2篇
  国内免费   3篇
电工技术   3篇
化学工业   143篇
金属工艺   21篇
机械仪表   2篇
建筑科学   1篇
矿业工程   1篇
能源动力   82篇
轻工业   1篇
石油天然气   3篇
无线电   17篇
一般工业技术   62篇
冶金工业   5篇
原子能技术   1篇
自动化技术   3篇
  2023年   38篇
  2022年   9篇
  2021年   15篇
  2020年   29篇
  2019年   20篇
  2018年   5篇
  2017年   20篇
  2016年   13篇
  2015年   21篇
  2014年   20篇
  2013年   20篇
  2012年   21篇
  2011年   18篇
  2010年   11篇
  2009年   13篇
  2008年   9篇
  2007年   20篇
  2006年   19篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1997年   2篇
排序方式: 共有345条查询结果,搜索用时 18 毫秒
11.
采用脉冲激光沉积(PLD)方法在Si(100)基底上制备了有效氧化层厚度为8.6nm,介电常数为29.3的HfO2薄膜.借助C射线衍射(XRD)、原子力显微镜(AFM)、高分辨透射电镜(HRTEM)分析了样品的微观结构,对电容的C-V与I-V电学特性进行了测试。实验结果表明,该方法制得的HfO2薄膜表面光滑,N2500℃下退火30mm后样品表面粗糙度由0.203nm变为0.498nm,薄膜由非晶转变为简单正交结构,界面层得到有效控制,该栅介质电容具有良好的C-V特性,较低的漏电流密度(4.3×10^-7A/cm^2,@-1V),是SiO2栅介质的理想替代物.  相似文献   
12.
13.
In this article, the spherulitic growth rate of neat and plasticized poly(lactic acid) (PLA) with triphenyl phosphate (TPP) was measured and analyzed in the temperature range of 104–142°C by polarizing optical microscopy. Neat PLA had the maximum value of 0.28 μm/s at 132°C, whereas plasticized PLA had higher value than that of neat PLA, but the temperature corresponding to the maximum value was shifted toward lower one with increasing TPP content. The isothermal crystallization kinetics of neat and plasticized PLA was also analyzed by differential scanning calorimetry and described by the Avrami equation. The results showed for neat PLA and its blends with various TPP contents, the average value of Avrami exponents n were close to around 2.5 at two crystallization temperatures of 113 and 128°C, the crystallization rate constant k was decreased, and the half‐life crystallization time t1/2 was increased with TPP content. For neat PLA and its blend with 15 wt % TPP content, the average value of n was 2.0 and 2.3, respectively, the value of k was decreased, and the value of t1/2 was increased with crystallization temperature (Tc). Further investigation into crystallization activation energy ΔEa of neat PLA and its blend with 15 wt % TPP showed that ΔEa of plasticized PLA was increased compared to neat PLA. It was verified by wide‐angle X‐ray diffraction that neat PLA and its blends containing various TPP contents crystallized isothermally in the temperature range of 113–128°C all form the α‐form crystal. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
14.
《Ceramics International》2023,49(10):14957-14963
The high-performance single-phase semiconductor materials with higher ionic conductivity have drawn substantial attention in fuel cell applications. Semiconductor materials play a key role to enhance ionic conductivity subsequently promoting low temperature solid oxide fuel cell (LT-SOFC) research. Herein, we proposed a semiconductor Co doped Y2O3 (YCO) samples with different molar ratios, which may easily access the high ionic conductivity and electrochemical performances at low operating temperatures. The resulting fabricated fuel cell 10% Co doped Y2O3 (YCO-10) device exhibits high ionic conductivity of ∼0.16 S cm−1 and a feasible peak power density of 856 mW cm−2 along with 1.09 OCV at 530 °C under H2/air conditions. The electrochemical impedance spectroscopy (EIS) reveals that YCO-10 electrolyte based SOFC device delivers the least ohmic resistance of 0.11–0.16 Ω cm2 at 530-450 °C. Electrode polarization resistance of the constructed fuel cell device noticed from 0.59 Ω cm2 to 0.28 Ω cm2 in H2/air environment at different elevated temperatures (450 °C to 530 °C). This work suggests that YCO-10 can be a promising alternative electrolyte, owing to its high fuel cell performance and enhanced ionic conductivity for LT-SOFC.  相似文献   
15.
《Ceramics International》2023,49(15):25371-25380
In this work, ultrathin planar alumina-based ceramic membranes with asymmetric structure and thickness less than 0.85 mm were successfully prepared by one-step molding phase transformation/sintering method using low-cost black talc (BT) nanosheets for the first time. The microstructure, pore structure, mechanical strength and permeability of novel ceramic membranes were systematically investigated with different BT amount and sintering temperatures. The doping of BT nanosheets effectively modulated the interfacial bonding area and strength between the grains, achieving significant increase in flexural strength through the evolution of the dense layer structure. The asymmetric structural features formed by the phase transformation/sintering process in combination with polymer substrate significantly reduced the thickness of effective separation layer, thus weakening the loss of flux caused by the densification of the film layer due to the interfacial modification process. Moreover, the organic carbon layers between BT layers were oxidized during the sintering process, forming fine pores and increasing the porosity, which showed to be unique characteristic different from other clay mineral materials. The prepared composite membrane had the pure water flux up to 16335 L m−2 h−1/bar at 1350 °C sintering, which achieved stable permeation of ∼5200 L m−2 h−1/bar and high retention over 90% for O/W emulsions.  相似文献   
16.
Platinum (Pt) is often used as anodic catalyst for direct methanol fuel cell (DMFC). However, platinum is difficult to achieve large-scale application because of its low stability and high cost. In this work, the electrocatalytic activity and stability of the Pt-based catalyst for methanol oxidation (MOR) are significantly improved by adding Ce and Ni to the catalyst. Additionally, the rare earth element-Pr (Dy) is also chosen to be added into the catalysts for comparison. A series of PtMNi (M = Ce, Pr, Dy) catalysts are prepared by impregnation and galvanic replacement reaction methods using carbon black as support. The electrocatalytic mass activity of PtCeNi/C, PtDyNi/C, PtPrNi/C and Pt/C is 3.92, 1.86, 1.69 and 0.8 A mgPt−1, respectively. The mass activity of these the above four catalysts after stability measurement is 3.14, 1.49, 1.27 and 0.72 A mgPt−1. Among them, PtCeNi/C has the highest catalytic activity. These as-prepared catalysts are also characterized by various analyzing techniques, such as TEM, HRTEM, XRD, XPS, ICP-OES, STEM, STEM-EDS elemental mapping and line-scanning etc. It shows that PtCeNi/C exhibits best catalytic activity (3.92 A mgPt−1) among the as-obtained catalysts, 4.9 times higher than that of commercial Pt/C (0.8 A mgPt−1). PtCeNi/C is also with excellent anti-CO poisoning ability. The outstanding catalytic performance of PtCeNi/C for the MOR is mainly attributable to uniform-sized PtCeNi nanoparticles, uniform Ni, Ce and Pt element distribution, and electron interaction among Pt-, Ni- and Ce-related species (electron transferring from Pt to CeO2).  相似文献   
17.
Developing efficient catalysts for formic acid decomposition has been studied extensively. Herein, the Au3Pd1 intermetallic compound is designed as a single atom catalyst for the dehydrogenation of formic acid. By using density functional theory calculations, the thermodynamic stability, electronic structure, and reaction mechanism for the Au3Pd1 catalyst are systematically investigated, and the surface charge polarization and atom-ordered arrangement were confirmed to play an important role in the efficient formic acid dehydrogenation. The special positively charged Pd single atom on the Au3Pd1 surface becomes the adsorption site of HCOO and the reaction site for formic acid decomposition. The nearby Au sites suppress the C–O bond cleavage due to their weak interaction with CO1 and OH1. As a result, the HCOO dehydrogenation pathway is predominant on the Pd single atomic sites and the CO formation is well inhibited. This intermetallic-based catalyst can be extended to other systems and provided general guidance for efficient catalyst design.  相似文献   
18.
The paper develops a statistical model for optimizing the Hydrogen-injected Natural gas (H-NG) high-pressure pipeline network. Gas hydrodynamic principles are utilized to construct the pipeline and compressor station model. The model developed is implemented on a pipeline grid that is supposed to carry Hydrogen as an energy carrier in a natural gas-carrying pipeline. The paper aims to optimize different objectives using ant colony optimization (ACO). The first objective includes a single objective optimization problem that evaluates the maximum permissible hydrogen amounts blended with natural gas (NG) for a set of pipeline constraints. We also evaluated the variations in operational variables on injecting Hydrogen into the natural gas pipeline networks at varying fractions. The study further develops a multi-objective optimization model that includes bi-objective and tri-objective problems and is optimized using ACO. Traditional studies have focused on single-objective optimization with minimal bi-objective issues. In addition, none of the earlier research has shown the effect of introducing Hydrogen to the NG network using tri-objective function evaluations. The bi-objective and tri-objective functions help evaluate the effect of injecting Hydrogen on different operational parameters. The study further attempts to fill the gap by detailing the modelling equations implemented through a bi-objective and tri-objective function for the H-NG pipeline network and optimized through ACO. Pareto fronts that show the tradeoff between the different objectives for the multi-objective problem have been generated. The primary objective of the bi-objective and tri-objective optimization problems is maximizing hydrogen mole percent in natural gas. The other objective chosen is minimizing compressor fuel consumption and maximizing delivery pressure, throughput, and power delivered at the delivery station. The findings will serve as a roadmap for pipeline operators interested in repurposing natural gas pipeline networks to transport hydrogen and natural gas blend (H-NG) and seeking to reduce carbon intensity per unit of energy-delivered fuel.  相似文献   
19.
Oxygen scavenging plastic can react with oxygen that was trapped in the packaging materials or permeated into the packages, and then, extend the shelf life of food contained in packages. Sodium ascorbate (SA) and modified iron (MFe) compounds were chosen as the main components of oxygen scavengers to prepare the oxygen scavenging LDPE plastics. However, the widely used hydrophobic LDPE packaging material will slow down the oxygen depletion rate of these oxygen scavenger compounds. So glucose was used to modify the hydrophobic property of LDPE to improve the oxygen depletion properties of LDPE oxygen scavenging plastic. The oxygen depletion efficiency of L95[SAx(MFe)y]5 series samples improved initially as the weight ratios of SA/MFe increase, and reached the best as the weight ratios of SA/MFe approach 7/3. After modifying LDPE with glucoses, the oxygen depletion efficiency of each ML95[SAx(MFe)y]5 specimen improved even better than that of the corresponding L95[SAx(MFe)y]5 specimen with the same loading of oxygen scavenger compound, wherein the oxygen depletion efficiency of ML95[SAx(MFe)y]5 series specimens reached the best as the weight ratios of SA/MFe approach 1/9. In consistent with the oxygen depletion properties found in the previous section, the peroxide values of modeled food samples tested in the airtight flask with L95[SAx(MFe)y]5 and ML95[SAx(MFe)y]5 series samples reduce consistently as their oxygen depletion properties improve. In order to understand the interesting oxygen depletion properties of L95[SAx(MFe)y]5 and ML95[SAx(MFe)y]5 series samples, Fourier transform infrared spectroscopy, scanning electron microscope and energy dispersive X-rays analysis of these samples were performed.  相似文献   
20.
The effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites was evaluated. Alkali treatment of the fibers and reaction with organosilanes as coupling agents were applied to improve fiber–matrix adhesion. Fiber loadings of 1, 3, 5, and 7 wt% were incorporated to the phenolic matrix and tensile, flexural, morphological and thermal properties of the resulting composites were studied. In general, mechanical properties of the composites showed a maximum at 3% of fiber loading and a uniform distribution of the fibers in such composites was observed. Silane treatment of the fibers provided derived composites with the best thermal and mechanical properties. Meanwhile, NaOH treatment improved thermal and flexural properties, but reduced tensile properties of the materials. Therefore, the phenolic composite containing 3% of silane treated cellulose fiber was selected as the material with optimal properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号